Skip to content

Caching

See Also


title: Caching Strategies with Instructor description: Learn how to use caching with Instructor to reduce API costs and improve performance.


For more details on caching concepts, see our blog.

Built-in Caching (v1.9.1 and later)

Instructor supports caching for every client. Pass a cache adapter when you create the client. The cache parameter flows through to all provider implementations via **kwargs:

from instructor import from_provider
from instructor.cache import AutoCache, DiskCache

# Works with any provider - cache flows through **kwargs automatically
client = from_provider("openai/gpt-4.1-mini", cache=AutoCache(maxsize=1000))
client = from_provider("anthropic/claude-3-haiku", cache=AutoCache(maxsize=1000))
client = from_provider("google/gemini-2.5-flash", cache=DiskCache(directory=".cache"))

# Your normal calls are now cached automatically
from pydantic import BaseModel


class User(BaseModel):
    name: str


first = client.create(
    messages=[{"role": "user", "content": "Hi."}], response_model=User
)
second = client.create(
    messages=[{"role": "user", "content": "Hi."}], response_model=User
)
assert first.name == second.name  # second call was served from cache

cache_ttl per-call override

Pass cache_ttl=<seconds> alongside cache= if you want a result to expire automatically:

from instructor import from_provider
from instructor.cache import DiskCache
from pydantic import BaseModel


class User(BaseModel):
    name: str


cache = DiskCache(directory=".cache")
client = from_provider("openai/gpt-4.1-mini")

client.create(
    messages=[{"role": "user", "content": "Hi"}],
    response_model=User,
    cache=cache,
    cache_ttl=3600,  # 1 hour
)

If the underlying cache backend supports TTL (e.g. DiskCache does), the entry will be evicted after the specified duration. For AutoCache the parameter is ignored.

Cache-key design

Under the hood Instructor generates a deterministic key for every call using instructor.cache.make_cache_key.

Components that influence the key:

Part Why it matters
model Different model names can yield different answers
messages / contents The full chat history is hashed
mode JSON vs. TOOLS vs. RESPONSES changes formatting
response_model schema The entire model_json_schema() is included so any change in field names, types or descriptions busts the cache automatically

The function returns a SHA-256 hex digest; its length is constant regardless of prompt size, so it is safe to use as a Redis key, file path, etc.

from instructor.cache import make_cache_key
from pydantic import BaseModel


class User(BaseModel):
    name: str


key = make_cache_key(
    messages=[{"role": "user", "content": "hello"}],
    model="gpt-4.1-mini",
    response_model=User,
    mode="TOOLS",
)
print(key)  # → 9b8f5e2c8c9e…
#> 2e2a9521bd269d62ee9a8559d7deacba0025c1f6da0ec1fc63d472788be096fe

If you need custom behaviour (e.g. ignoring certain prompt fields) you can write your own helper and pass a derived key into a bespoke cache adapter.

Raw Response Reconstruction

For raw completion objects (used with create_with_completion), we use a SimpleNamespace trick to reconstruct the original object structure:

from pydantic import BaseModel


class Completion(BaseModel):
    content: str
    usage: dict


# Example completion object
completion = Completion(content="Hello", usage={"tokens": 10})

# When caching:
raw_json = completion.model_dump_json()  # Serialize to JSON

# When restoring from cache:
import json
from types import SimpleNamespace

restored = json.loads(raw_json, object_hook=lambda d: SimpleNamespace(**d))

This approach allows us to restore the original dot-notation access patterns (e.g., completion.usage.total_tokens) without requiring the original class definitions. The SimpleNamespace objects behave identically to the original completion objects for attribute access while being much simpler to reconstruct from JSON.

1. functools.cache for Simple In-Memory Caching

When to Use: Good for functions with immutable arguments, called repeatedly with the same parameters in small to medium-sized applications. Use this when reusing the same data within a single session.

import time
import functools
import instructor
from pydantic import BaseModel

client = instructor.from_provider("openai/gpt-4.1-mini")


class UserDetail(BaseModel):
    name: str
    age: int


@functools.cache
def extract(data) -> UserDetail:
    return client.create(
        response_model=UserDetail,
        messages=[
            {"role": "user", "content": data},
        ],
    )


start = time.perf_counter()  # (1)
model = extract("Extract jason is 25 years old")
print(f"Time taken: {time.perf_counter() - start}")
#> Time taken: 0.43337099999189377

start = time.perf_counter()
model = extract("Extract jason is 25 years old")  # (2)
print(f"Time taken: {time.perf_counter() - start}")
#> Time taken: 1.166015863418579e-06
  1. Using time.perf_counter() to measure the time taken to run the function is better than using time.time() because it's more accurate and less susceptible to system clock changes.
  2. The second time we call extract, the result is returned from the cache, and the function is not called.

Changing the Model does not Invalidate the Cache

Note that changing the model does not invalidate the cache. This is because the cache key is based on the function's name and arguments, not the model. This means that if we change the model, the cache will still return the old result.

Call extract multiple times with the same argument, and the result will be cached in memory for faster access.

Benefits: Easy to implement, fast access due to in-memory storage, and requires no additional libraries.

What is a decorator?

A decorator is a function that takes another function and extends the behavior of the latter function without explicitly modifying it. In Python, decorators are functions that take a function as an argument and return a closure.

def decorator(func):
    def wrapper(*args, **kwargs):
        print("Do something before")  # (1)
        #> Do something before
        result = func(*args, **kwargs)
        print("Do something after")  # (2)
        #> Do something after
        return result

    return wrapper


@decorator
def say_hello():
    #> Hello!
    print("Hello!")
    #> Hello!


say_hello()
#> "Do something before"
#> "Hello!"
#> "Do something after"
  1. The code is executed before the function is called
  2. The code is executed after the function is called

2. diskcache for Persistent, Large Data Caching

Copy Caching Code

The same instructor_cache decorator works for both diskcache and redis caching. Copy the code below and use it for both examples.

import functools
import inspect
import diskcache

cache = diskcache.Cache('./my_cache_directory')  # (1)


def instructor_cache(func):
    """Cache a function that returns a Pydantic model"""
    return_type = inspect.signature(func).return_annotation
    if not issubclass(return_type, BaseModel):  # (2)
        raise ValueError("The return type must be a Pydantic model")

    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        key = f"{func.__name__}-{functools._make_key(args, kwargs, typed=False)}"
        # Check if the result is already cached
        if (cached := cache.get(key)) is not None:
            # Deserialize from JSON based on the return type
            return return_type.model_validate_json(cached)

        # Call the function and cache its result
        result = func(*args, **kwargs)
        serialized_result = result.model_dump_json()
        cache.set(key, serialized_result)

        return result

    return wrapper
  1. We create a new diskcache.Cache instance to store the cached data. This will create a new directory called my_cache_directory in the current working directory.
  2. We only want to cache functions that return a Pydantic model to simplify serialization and deserialization logic in this example code

Remember that you can change this code to support non-Pydantic models, or to use a different caching backend. More over, don't forget that this cache does not invalidate when the model changes, so you might want to encode the Model.model_json_schema() as part of the key.

When to Use: Good for applications that need cache persistence between sessions or deal with large datasets. Use this when you want to reuse the same data across multiple sessions or store large amounts of data.

import functools
import inspect
import instructor
import diskcache
from pydantic import BaseModel

client = instructor.from_provider("openai/gpt-4.1-mini")
cache = diskcache.Cache('./my_cache_directory')


def instructor_cache(func):
    """Cache a function that returns a Pydantic model"""
    return_type = inspect.signature(func).return_annotation  # (4)
    if not issubclass(return_type, BaseModel):  # (1)
        raise ValueError("The return type must be a Pydantic model")

    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        key = (
            f"{func.__name__}-{functools._make_key(args, kwargs, typed=False)}"  #  (2)
        )
        # Check if the result is already cached
        if (cached := cache.get(key)) is not None:
            # Deserialize from JSON based on the return type (3)
            return return_type.model_validate_json(cached)

        # Call the function and cache its result
        result = func(*args, **kwargs)
        serialized_result = result.model_dump_json()
        cache.set(key, serialized_result)

        return result

    return wrapper


class UserDetail(BaseModel):
    name: str
    age: int


@instructor_cache
def extract(data) -> UserDetail:
    return client.create(
        response_model=UserDetail,
        messages=[
            {"role": "user", "content": data},
        ],
    )
  1. We only want to cache functions that return a Pydantic model to simplify serialization and deserialization logic
  2. We use functool's _make_key to generate a unique key based on the function's name and arguments. This is important because we want to cache the result of each function call separately.
  3. We use Pydantic's model_validate_json to deserialize the cached result into a Pydantic model.
  4. We use inspect.signature to get the function's return type annotation, which we use to validate the cached result.

Benefits: Reduces computation time for heavy data processing and provides disk-based caching for persistence.

3. Redis Caching Decorator for Distributed Systems

Copy Caching Code

The same instructor_cache decorator works for both diskcache and redis caching. Copy the code below and use it for both examples.

import functools
import inspect
import redis

cache = redis.Redis("localhost")


def instructor_cache(func):
    """Cache a function that returns a Pydantic model"""
    return_type = inspect.signature(func).return_annotation
    if not issubclass(return_type, BaseModel):
        raise ValueError("The return type must be a Pydantic model")

    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        key = f"{func.__name__}-{functools._make_key(args, kwargs, typed=False)}"
        # Check if the result is already cached
        if (cached := cache.get(key)) is not None:
            # Deserialize from JSON based on the return type
            return return_type.model_validate_json(cached)

        # Call the function and cache its result
        result = func(*args, **kwargs)
        serialized_result = result.model_dump_json()
        cache.set(key, serialized_result)

        return result

    return wrapper

Remember that you can change this code to support non-Pydantic models, or to use a different caching backend. More over, don't forget that this cache does not invalidate when the model changes, so you might want to encode the Model.model_json_schema() as part of the key.

When to Use: Good for distributed systems where multiple processes need to access cached data, or for applications that need fast read/write access and handle complex data structures.

import redis
import functools
import inspect
import instructor

from pydantic import BaseModel

client = instructor.from_provider("openai/gpt-4.1-mini")
cache = redis.Redis("localhost")


def instructor_cache(func):
    """Cache a function that returns a Pydantic model"""
    return_type = inspect.signature(func).return_annotation
    if not issubclass(return_type, BaseModel):  # (1)
        raise ValueError("The return type must be a Pydantic model")

    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        key = f"{func.__name__}-{functools._make_key(args, kwargs, typed=False)}"  # (2)
        # Check if the result is already cached
        if (cached := cache.get(key)) is not None:
            # Deserialize from JSON based on the return type
            return return_type.model_validate_json(cached)

        # Call the function and cache its result
        result = func(*args, **kwargs)
        serialized_result = result.model_dump_json()
        cache.set(key, serialized_result)

        return result

    return wrapper


class UserDetail(BaseModel):
    name: str
    age: int


@instructor_cache
def extract(data) -> UserDetail:
    # Assuming client.chat.completions.create returns a UserDetail instance
    return client.create(
        response_model=UserDetail,
        messages=[
            {"role": "user", "content": data},
        ],
    )
  1. We only want to cache functions that return a Pydantic model to simplify serialization and deserialization logic
  2. We use functool's _make_key to generate a unique key based on the function's name and arguments. This is important because we want to cache the result of each function call separately.

Benefits: Scalable for large-scale systems, supports fast in-memory data storage and retrieval, and works with various data types.

Same Decorator, Different Backend

The code above uses the same instructor_cache decorator as before. The implementation is the same, but it uses a different caching backend.